Computing with integrals in nonlinear algebra Exercises

Pierre Lairez

March 25, 2021

Problem 1. Show that the series $\sum_{n \geq 0}\binom{5 n}{n} t^{n}$ is algebraic.
Show that the series $\sum_{n \geq 0} \frac{(3 n)!}{n!^{3}} t^{n}$ is not algebraic.
Problem 2. Using the formula $\gamma=-\int_{0}^{\infty} e^{-t} \log t \mathrm{~d} t$, compute 1000 digits of the EulerMascheroni constant.

Problem 3. Show that

$$
\sum_{k=1}^{n}(-4)^{-k}\binom{n-k}{k-1} \sum_{j=1}^{3 m}(-2)^{-j}\binom{n+1-2 k}{j-1}\binom{m-k}{3 m-j}=0, \quad \forall n, m>0
$$

and that

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \sum_{j=0}^{k}\binom{k}{j}^{3} .
$$

Problem 4. Show that

$$
\sum_{k=0}^{n}\binom{n}{k} f_{k} f_{n-k}=\frac{1}{5}\left(2^{n} g_{n}-2\right)
$$

where f_{n} is defined by $f_{n+2}=f_{n+1}+f_{n}$ and $f_{0}=0$ and $f_{1}=1$, and g_{n} is defined by the same recurrence relation but $g_{0}=2$ and $g_{1}=1$.

Problem 5. Inspired by Kontsevich and Odesskii (2020), consider the differential operator $L=\partial z(z-1)(z-\alpha) \partial+z$, where α is a parameter with $|\alpha| \ll 1$.

1. Show that L is Fuchsian.

Let M be the monodromy matrix corresponding to a loop enclosing 0 and α (but not 1).
2. Show that $\operatorname{det} M=1$.
3. Let $\exp (\pm i 2 \pi \lambda)$ be the two eigenvalues of M. Check experimentally that λ is a power series in α with rational coefficients. Compute as many coefficients as you can.

Problem 6. Inspired by Koutschan (2013), consider a random walk on a face-centered cubic structure: a point X in \mathbb{Z}^{3} starts at 0 , and at each step the point moves randomly to one of its twelve neighbors in the structure:

$$
X+(\pm 1, \pm 1,0), X+(\pm 1,0, \pm 1), X+(0, \pm 1, \pm 1)
$$

Let X_{n} be the position after the nth step (this is a random variable). Let p_{n} be the probability that $X_{n}=0$.

1. Let a_{n} be the probability that $X_{n}=0$. Let $A(t)=\sum_{n \geq 0} a_{n} t^{n}$. Give a rational function $R\left(t, x_{1}, x_{2}, x_{3}\right)$ such that

$$
A(t)=\operatorname{res}_{x_{1}, x_{2}, x_{3}} R .
$$

2. Let $b_{0}=0$ and, for $n>0$, let b_{n} be the probability that $X_{n}=0$ and $X_{k} \neq 0$ for $0<k<n$. Let $B(t)=\sum_{n \geq 0} b_{n} t^{n}$. Show that $B(t)=1-A(t)^{-1}$.
3. Evaluate numerically the return probability, that is the probability that there is an $n>0$ such that $X_{n}=0$.

References

M. Kontsevich and A. Odesskii (2020). " p-Determinants and monodromy of differential operators". arXiv: 2009.12159.
C. Koutschan (2013). "Lattice Green Functions of the Higher-Dimensional Face-Centered Cubic Lattices". In: J. Phys. A 46.12, pp. 125005, 14. DoI: 10.1088/1751-8113/46/ 12/125005.

